//
you're reading...
fisika, ilmu pengetahuan alam

Dinamika

GAYA TERMASUK VEKTOR

DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya.
GAYA TERMASUK VEKTOR, penjumlahan gaya = penjumlahan vektor.
Penjumlahan dua buah vektor gaya F1 dan F2:
FR = Ö F12 + F22 + 2 F1F2 cos a
q = sudut terkecil antara F1 dan F2

Untuk menjumlahkan beberapa vektor gaya maka gaya-gaya tersebut harus diuraikan pada sumbu koordinatnya (x,y), jadi:
FR = Ö FX2 + FY2
FX = jumlah komponen gaya pada sb-x
FY = jumlah komponen gaya pada sb-y
FR = resultan gaya


HUKUM NEWTON

Hukum Newton diterapkan pada benda yang dianggap sebagai partikel,[7] dalam evaluasi pergerakan misalnya, panjang benda tidak dihiraukan, karena obyek yang dihitung dapat dianggap kecil, relatif terhadap jarak yang ditempuh. Perubahan bentuk (deformasi) dan rotasi dari suatu obyek juga tidak diperhitungkan dalam analisisnya. Maka sebuah planet dapat dianggap sebagai suatu titik atau partikel untuk dianalisa gerakan orbitnya mengelilingi sebuah bintang.
Dalam bentuk aslinya, hukum gerak Newton tidaklah cukup untuk menghitung gerakan dari obyek yang bisa berubah bentuk (benda tidak padat). Leonard Euler pada tahun 1750 memperkenalkan generalisasi hukum gerak Newton untuk benda padat yang disebut hukum gerak Euler, yang dalam perkembangannya juga dapat digunakan untuk benda tidak padat. Jika setiap benda dapat direpresentasikan sebagai sekumpulan partikel-partikel yang berbeda, dan tiap-tiap partikel mengikuti hukum gerak Newton, maka hukum-hukum Euler dapat diturunkan dari hukum-hukum Newton. Hukum Euler dapat dianggap sebagai aksioma dalam menjelaskan gerakan dari benda yang memiliki dimensi.[8]
HUKUM NEWTON I
HUKUM NEWTON I disebut juga hukum kelembaman (Inersia).Sifat lembam benda adalah sifat mempertahankan keadaannya, yaitu keadaan tetap diam atau keaduan tetap bergerak beraturan.
DEFINISI HUKUM NEWTON I :
Setiap benda akan tetap bergerak lurus beraturan atau tetap dalam keadaan diam jika tidak ada resultan
gaya (F) yang bekerja pada benda itu, jadi:
S F = 0 a = 0 karena v=0 (diam), atau v= konstan (GLB)

HUKUM NEWTON II
a = F/m
S F = m a
S F = jumlah gaya-gaya pada benda
m = massa benda
a = percepatan benda
Rumus ini sangat penting karena pada hampir semna persoalan gerak {mendatar/translasi (GLBB) dan melingkar (GMB/GMBB)} yang berhubungan dengan percepatan den massa benda dapat diselesaikan dengan rumus tersebut.

HUKUM NEWTON III

DEFINISI HUKUM NEWTON III:
Jika suatu benda mengerjakan gaya pada benda kedua maka benda kedua tersebut mengerjakan juga gaya pada benda pertama, yang besar gayanya = gaya yang diterima tetapi berlawanan arah. Perlu diperhatikan bahwa kedua gaya tersebut harus bekerja pada dua benda yang berlainan.
F aksi = – F reaksi
N dan T1 = aksi reaksi (bekerja pada dua benda)
T2 dan W = bukan aksi reaksi (bekerja pada tiga benda)

Gaya gesek : statis kinetik

Gaya gesek adalah gaya yang bekerja pada benda dan arahnya selalu melawan arah gerak benda. Gaya gesek hanya akan bekerja pada benda jika ada gaya luar yang bekerja pada benda tersebut.

GAYA GESEK

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Gaya gesek (Ff) dari benda yang bergerak di atas suatu papan permukaan
Gaya gesek adalah gaya yang berarah melawan gerak benda atau arah kecenderungan benda akan bergerak. Gaya gesek muncul apabila dua buah benda bersentuhan. Benda-benda yang dimaksud di sini tidak harus berbentuk padat, melainkan dapat pula berbentukcair, ataupun gas. Gaya gesek antara dua buah benda padat misalnya adalah gaya gesek statis dan kinetis, sedangkan gaya antara benda padat dan cairan serta gas adalah gaya Stokes.
Secara umum gaya gesek dapat dituliskan sebagai suatu ekspansi deret, yaitu
\vec{f} = – b_0 \frac{\vec{v}}{|\vec{v}|} – b_1 v \frac{\vec{v}}{|\vec{v}|} – b_2 v^2 \frac{\vec{v}}{|\vec{v}|} – ..,
di mana suku pertama adalah gaya gesek yang dikenal sebagai gaya gesek statis dan kinetis, sedangkan suku kedua dan ketiga adalah gaya gesek pada benda dalam fluida.
Gaya gesek dapat merugikan atau bermanfaat. Panas pada poros yang berputar, engsel pintu yang berderit, dan sepatu yang aus adalah contoh kerugian yang disebabkan oleh gaya gesek. Akan tetapi tanpa gaya gesek manusia tidak dapat berpindah tempat karena gerakan kakinya hanya akan menggelincir di atas lantai. Tanpa adanya gaya gesek antara ban mobil dengan jalan, mobil hanya akan slip dan tidak membuat mobil dapat bergerak. Tanpa adanya gaya gesek juga tidak dapat tercipta parasut.
Asal gaya gesek
Gaya gesek merupakan akumulasi interaksi mikro antar kedua permukaan yang saling bersentuhan. Gaya-gaya yang bekerja antara lain adalah gaya elektrostatik pada masing-masing permukaan. Dulu diyakini bahwa permukaan yang halus akan menyebabkan gaya gesek (atau tepatnya koefisien gaya gesek) menjadi lebih kecil nilainya dibandingkan dengan permukaan yang kasar, akan tetapi dewasa ini tidak lagi demikian. Konstruksi mikro (nano tepatnya) pada permukaan benda dapat menyebabkan gesekan menjadi minimum, bahkan cairan tidak lagi dapat membasahinya (efek lotus).

Jenis-jenis gaya gesek:

Terdapat dua jenis gaya gesek antara dua buah benda yang padat saling bergerak lurus, yaitu gaya gesek statis dan gaya gesek kinetis, yang dibedakan antara titik-titik sentuh antara kedua permukaan yang tetap atau saling berganti (menggeser). Untuk benda yang dapat menggelinding, terdapat pula jenis gaya gesek lain yang disebut gaya gesek menggelinding (rolling friction). Untuk benda yang berputar tegak lurus pada permukaan atau ber-spin, terdapat pula gaya gesek spin (spin friction). Gaya gesek antara benda padat dan fluida disebut sebagai gaya Coriolis-Stokes atau gaya viskos (viscous force).

~Gaya gesek kinetis
Gaya gesek kinetis (atau dinamis) terjadi ketika dua benda bergerak relatif satu sama lainnya dan saling bergesekan. Koefisien gesek kinetis umumnya dinotasikan dengan μk dan pada umumnya selalu lebih kecil dari gaya gesek statis untuk material yang sama.

~Gaya gesek statis
Gaya gesek statis adalah gesekan antara dua benda padat yang tidak bergerak relatif satu sama lainnya. Seperti contoh, gesekan statis dapat mencegah benda meluncur ke bawah pada bidang miring. Koefisien gesek statis umumnya dinotasikan dengan μs, dan pada umumnya lebih besar dari koefisien gesek kinetis.
Gaya gesek statis dihasilkan dari sebuah gaya yang diaplikasikan tepat sebelum benda tersebut bergerak. Gaya gesekan maksimum antara dua permukaan sebelum gerakan terjadi adalah hasil dari koefisien gesek statis dikalikan dengan gaya normal f = μs Fn. Ketika tidak ada gerakan yang terjadi, gaya gesek dapat memiliki nilai dari nol hingga gaya gesek maksimum. Setiap gaya yang lebih kecil dari gaya gesek maksimum yang berusaha untuk menggerakkan salah satu benda akan dilawan oleh gaya gesekan yang setara dengan besar gaya tersebut namun berlawanan arah. Setiap gaya yang lebih besar dari gaya gesek maksimum akan menyebabkan gerakan terjadi. Setelah gerakan terjadi, gaya gesekan statis tidak lagi dapat digunakan untuk menggambarkan kinetika benda, sehingga digunakan gaya gesek kinetis.

gaya sentripetal (Fs)

Fs adalah gaya yang bekerja pada sebuah benda yang bergerak melingkar dimana arah F. selalu menuju ke pusat lingkaran.
Fs = m as
Fs= m v2/R = m w2 R
as = v2/R = percepatan sentripetal
Reaksi dari gaya sentripetal disebut gaya sentrifugal, yang besarnya sama tetapi arahnya berlawanan dengan arah gaya sentripetal.

Rumus gaya sentripetal
Gaya sentripetal memiliki besar sebanding kuadrat kecepatan tangensial benda dan berbanding terbalik dengan jari-jari lintasan

\!F_s = m\frac{v^2}{r}

dengan arah menuju pusat lintasan berbentuk lingkaran, yang menunjukkan bahwa terdapat suatu percepatan sentripetal, yaitu

\!a_s = \frac{v^2}{r}

apabila dianalogikan dengan hukum kedua Newton.

\!F = m a

= Representasi vektor
Dalam notasi vektor dengan sistem koordinat polar, gaya sentripetal dapat dituliskan sebagai

\!\vec{F_s} = – m\frac{v^2}{r} \hat{r}

Vektor-vektor sesaat gaya sentripetal.
dengan

\!\hat{r}=\frac{\vec{r}}{r}

adalah vektor satuan dalam arah radial, yang umumnya dipilih bernilai positif mengarah ke luar lingkaran.
Representasi produk perkalian vektor[sunting]
Atau dapat pula dituliskan sebagai produk dari perkalian vektor

\vec{F}_s = -\frac{m v^2}{r} \hat{r} = -\frac{m v^2}{r} \frac{\vec{r}}{r} = -m \omega^2 \vec{r} = m \vec{\omega} \times (\vec{\omega} \times \vec{r} )

Dengan arah \vec{\omega} mengikuti aturan tangan kanan. Dalam kasus seperti ditunjukkan dalam gambar, besaran-besaran vektor yang dimaksud bernilai:

\!\vec{\omega} = \omega\ \hat{k}

\!\vec{r} = r\left[ \cos(\omega t)\ \hat{i} + \sin(\omega t)\ \hat{j} \right]

dan sebagai konsekuensinya

\!\hat{r} = \cos(\omega t)\ \hat{i} + \sin(\omega t)\ \hat{j}

\!\vec{v} = \vec{\omega} \times \vec{r} = \omega r\ \left[ – \sin(\omega t)\ \hat{i} + \cos(\omega t)\ \hat{j} \right]

Dengan demikian dapat dibuktikan bahwa

\vec{F}_s = m \vec{\omega} \times (\vec{\omega} \times \vec{r} ) = m \vec{\omega} \times \vec{v}

= m (\omega \hat{k}) \times \left( \omega r\ \left[ – \sin(\omega t)\ \hat{i} + \cos(\omega t)\ \hat{j} \right] \right)

= m \omega^2 r \left[ – \sin(\omega t)\ \hat{j} – \cos(\omega t)\ \hat{i} \right]

= m \omega^2 r \left\{ – \left[ \sin(\omega t)\ \hat{j} + \cos(\omega t)\ \hat{i} \right] \right\}

= m \omega^2 r (-\hat{r}) = – m \omega^2 \vec{r}

seperti dituliskan sebelumnya, yang menunjukkan bahwa gaya sentripetal selalu menuju ke pusat lintasan lingkaran.

Usaha atau kerja

Usaha atau kerja (dilambangkan dengan W dari Bahasa Inggris Work) adalah energi yang disalurkan gaya ke sebuah benda sehingga benda tersebut bergerak.
Usaha didefinisikan sebagai integral garis (pembaca yang tidak akrab dengan kalkulus peubah banyak lihat “rumus mudah” di bawah):

W = \int_{C} \vec F \cdot \vec{ds}

di mana
C adalah lintasan yang dilalui oleh benda;
\vec F adalah gaya;
\vec s adalah posisi.

Usaha adalah kuantitas skalar, tetapi dia dapat positif atau negatif. Tidak semua gaya melakukan kerja. cotohnya, gaya sentripetal dalam gerakan berputar seragam tidak menyalurkan energi; kecepatan objek yang bergerak tetap konstan. Kenyataan ini diyakinkan oleh formula: bila vektor dari gaya dan perpindahan tegak lurus, yakni perkalian titikmereka sama dengan nol.
Bentuk usaha tidak selalu mekanis, seperti usaha listrik, dapat dipandang sebagai kasus khusus dari prinsip ini; misalnya, di dalam kasus listrik, usaha dilakukan dalam partikelbermuatan yang bergerak melalui sebuah medium.
Konduksi panas dari badan yang lebih hangat ke yang lebih dingin biasanya bukan merupakan usaha mekanis, karena pada ukuran makroskopis, tidak ada gaya yang dapat diukur. Pada ukuran atomis, ada gaya di mana atom berbenturan, tetapi dalam jumlahnya usaha hampir sama dengan nol.

Jika sebuah benda menempuh jarak sejauh S akibat gaya F yang bekerja pada benda tersebut maka dikatakan gaya itu melakukan usaha, dimana arah gaya F harus sejajar dengan arah jarak tempuh S.
USAHA adalah hasil kali (dot product) antara gaya den jarak yang ditempuh.

W = F S = |F| |S| cos q
q = sudut antara F dan arah gerak

Satuan usaha/energi : 1 Nm = 1 Joule = 107 erg

Dimensi usaha energi: 1W] = [El = ML2T-2
Kemampuan untuk melakukan usaha menimbulkan suatu ENERGI (TENAGA).
Energi dan usaha merupakan besaran skalar.

Discussion

No comments yet.

Leave a comment

Masukkan alamat surat elektronik Anda untuk mengikuti blog ini dan menerima pemberitahuan tentang tulisan baru melalui surat elektronik.

Join 391 other subscribers

December 2013
M T W T F S S
 1
2345678
9101112131415
16171819202122
23242526272829
3031  
Flag Counter
Powered by Wordpress ~ Designed by WooThemes ~ Redesigned by Aditia Nugraha

Artikel Terlaris Pilihan Pembaca

Cara Reset MikroTik Dengan Netinstall , Sebuah alternatif untuk reset setting mikrotik agan di Mikrotik RB750 atau RB751. Cara reset mikroTik dengan netinstall ini mungkin dah paling extreme kali yak Baca selengkapnya »